Use of an oxygen-insensitive microscale biosensor for methane to measure methane concentration profiles in a rice paddy.
نویسندگان
چکیده
An oxygen-insensitive microscale biosensor for methane was constructed by furnishing a previously described biosensor with an oxygen guard. The guard consisted of a glass capillary containing heterotrophic bacteria, which consumed oxygen diffusing through the tip membrane, thus preventing it from diffusing into the methane-sensing unit. Oxygen microprofiles were measured through the oxygen guard capillary, demonstrating the principle and limitations of the method. When the tip of the guard capillary was exposed to 100% oxygen at 21 degrees C, heterotrophic oxygen consumption prevented oxygen from diffusing further than 170 mum into the capillary, whereas atmospheric levels of oxygen were consumed within 50 mum. The capacity of the oxygen guard for scavenging oxygen decreased with decreasing temperature, and atmospheric levels of oxygen caused oxygen penetration to 200 mum at 5 degrees C. The sensors could be manufactured with tip diameters as small as 25 mum, and response times were about 1 min at room temperature. Pore water profiles of methane concentrations in a rice paddy soil were measured, and a strong correlation between the depths of oxygen penetration and methane appearance was observed as a function of the light regimen; this finding confirmed the role of microbenthic photosynthesis in limiting methane emissions from surfaces of waterlogged sediments and soils.
منابع مشابه
Methane Emissions and Microbial Communities as Influenced by Dual Cropping of Azolla along with Early Rice
Azolla caroliniana Willd. is widely used as a green manure accompanying rice, but its ecological importance remains unclear, except for its ability to fix nitrogen in association with cyanobacteria. To investigate the impacts of Azolla cultivation on methane emissions and environmental variables in paddy fields, we performed this study on the plain of Dongting Lake, China, in 2014. The results ...
متن کاملMethane oxidation and the competition for oxygen in the rice rhizosphere.
A mechanistic approach is presented to describe oxidation of the greenhouse gas methane in the rice rhizosphere of flooded paddies by obligate methanotrophic bacteria. In flooded rice paddies these methanotrophs compete for available O(2) with other types of bacteria. Soil incubation studies and most-probable-number (MPN) counts of oxygen consumers show that microbial oxygen consumption rates w...
متن کاملLong-term growth at elevated carbon dioxide stimulates methane emission in tropical paddy rice
Recent anthropogenic emissions of key atmospheric trace gases (e.g. CO2 and CH4) which absorb infra-red radiation may lead to an increase in mean surface temperatures and potential changes in climate. Although sources of each gas have been evaluated independently, little attention has focused on potential interactions between gases which could influence emission rates. In the current experiment...
متن کاملReduced methane emissions from large-scale changes in water management of China’s rice paddies during 1980–2000
[1] Decreased methane emissions from paddy rice may have contributed to the decline in the rate of increase of global atmospheric methane (CH4) concentration over the last 20 years. In China, midseason paddy drainage, which reduces growing season CH4 fluxes, was first implemented in the early 1980s, and has gradually replaced continuous flooding in much of the paddy area. We constructed a regio...
متن کاملEffect of Elevated CO2 Concentration, Elevated Temperature and No Nitrogen Fertilization on Methanogenic Archaeal and Methane-Oxidizing Bacterial Community Structures in Paddy Soil
Elevated concentrations of atmospheric CO2 ([CO2]) enhance the production and emission of methane in paddy fields. In the present study, the effects of elevated [CO2], elevated temperature (ET), and no nitrogen fertilization (LN) on methanogenic archaeal and methane-oxidizing bacterial community structures in a free-air CO2 enrichment (FACE) experimental paddy field were investigated by PCR-DGG...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 64 3 شماره
صفحات -
تاریخ انتشار 1998